Generalized linear model with functional predictors and their derivatives
نویسندگان
چکیده
منابع مشابه
Generalized Linear Models with Functional Predictors
In this paper we present a technique for extending generalized linear models (GLM) to the situation where some of the predictor variables are observations from a curve or function. The technique is particularly useful when only fragments of each curve have been observed. We demonstrate, on both simulated and real world data sets, how this approach can be used to perform linear, logistic and cen...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملFunctional generalized linear models with images as predictors.
Functional principal component regression (FPCR) is a promising new method for regressing scalar outcomes on functional predictors. In this article, we present a theoretical justification for the use of principal components in functional regression. FPCR is then extended in two directions: from linear to the generalized linear modeling, and from univariate signal predictors to high-resolution i...
متن کاملFunctional linear regression with derivatives
We introduce a new model of linear regression for random functional inputs taking into account the first order derivative of the data. We propose an estimation method which comes down to solving a special linear inverse problem. Our procedure tackles the problem through a double and synchronized penalization. An asymptotic expansion of the mean square prevision error is given. The model and the...
متن کاملRegularization and Model Selection with Categorial Predictors and Effect Modifiers in Generalized Linear Models
Varying-coefficient models with categorical effect modifiers are considered within the framework of generalized linear models. We distinguish between nominal and ordinal effect modifiers, and propose adequate Lasso-type regularization techniques that allow for (1) selection of relevant covariates, and (2) identification of coefficient functions that are actually varying with the level of a pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2016
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2015.10.009